TAPASS : Tool for Annotation of Protein Amyloidogenicty in the context of other Structural States

Andrey KAJAVA: andrey.kajava@crbm.cnrs.fr Théo FALGARONE: theo.falgarone@crbm.cnrs.fr

Centre de Recherche de Biologie Cellulaire de Montpellier 1919, route de Mende 34293 – Montpellier Cedex 05

1 Introduction

TAPASS (Tool for Annotation of Protein Amyloidogenicity in the context of other Structural States) provides consensual results on the occurrence and distribution of amyloid-forming regions in proteins assessed through the prism of the overall structural context. The pipeline allows the detection of Exposed Amyloidogenic Regions (EARs). It gather a total of 11 bioinformatic tools, each with a specific function.

2 TAPASS usage

2.1 Protein sequence query

2.1.1 Sequence input

Input is a single protein sequence, either pasted or uploaded as a file in FASTA format. The sequence must contain a header starting by ">" and followed by the protein ID.

Example:

>splP23515lOMGP_HUMAN Oligodendrocyte-myelin glycoprotein OS=Homo sapiens OX=9606 GN=OMG PE=1 SV=2

MEYQILKMSLCLFILLFLTPGILCICPLQCICTERHRHVDCSGRNLSTLPSGLQENIIHL NLSYNHFTDLHNQLTQYTNLRTLDISNNRLESLPAHLPRSLWNMSAANNNIKLLDKSDTA YQWNLKYLDVSKNMLEKVVLIKNTLRSLEVLNLSSNKLWTVPTNMPSKLHIVDLSNNSLT QILPGTLINLTNLTHLYLHNNKFTFIPDQSFDQLFQLQEITLYNNRWSCDHKQNITYLLK WMMETKAHVIGTPCSTQISSLKEHNMYPTPSGFTSSLFTVSGMQTVDTINSLSVVTQPKV TKIPKQYRTKETTFGATLSKDTTFTSTDKAFVPYPEDTSTETINSHEAAAATLTIHLQDG MVTNTSLTSSTKSSPTPMTLSITSGMPNNFSEMPQQSTTLNLWREETTTNVKTPLPSVAN AWKVNASFLLLLNVVVMLAV

TAPASS - Tool for Annotation of Protein Amyloidogenicity in the context of other TAPASS pipeline is designed to predict protein aggregation by accounting for the overall structural context of the pre- intrinsically disordered regions (IDRs) and carrying high amyloidogenic potential Citing TAPASS: Contact: andrey.kajava@crbm.cnrs.fr Documentation	
Protein sequence query AlphaFold model query	
Paste a query sequence in FASTA format:* 	Options: • Amyloidogenic regions • © ArchCandy • © Tango • © PASTA • © Structural domains (CATH) • © Protein domains (Pfam) • © Transmerbrane regions (TMHMM) • © Unstructured regions (IUPred and BISMM predictor)
Upload a file* Parcourir) Aucun fichier sélectionné.	 I andem repeats (Meta Repeat Finder) Kingdom* Eukaryote Short linear motifs (SLIMs) Signal peptide (SignalP) mit Query

2.1.2 Option selection

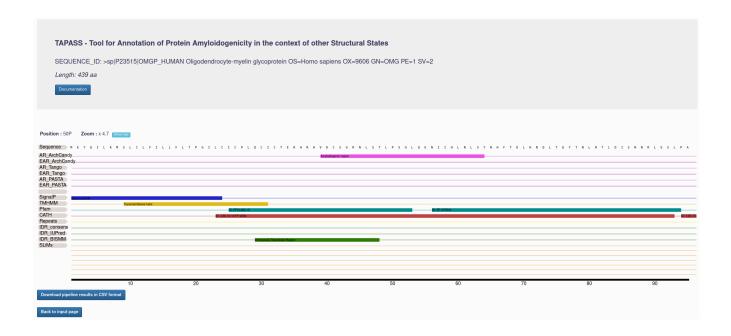
TAPASS contains 11 distinctive bioinformatic tools (see more details in section 3). By default all tools are executed, but users can unselect them if they want to exclude some tools from the analysis. The kingdom parameter by default is '*Eukaryote*', but it is possible to change it to 'gram-' or 'gram+'. This choice will affect the prediction of SignalP and SLiMs. In case the protein's origin is not known we recommend the selection of '*Eukaryote*'.

2.2 AlphaFold model query

2.2.1 File input

This mode allows to input an AlphaFold model recorded as a pdb file. The disordered regions are determined by a combination of the confidence score (pLDDT) given by AlphaFold and the relative accessible surface area (RASA) obtained by using DSSP. We consider a region as disordered if the pLDDT is lower than 70 and if in a window of 10 residues at least eight of them are exposed to the solvent (RASA > 0.15). Note that this mode does not have 'CATH', 'IUPred' and 'BiSMM' as they were meant to determine IDRs, which is now detected by using AlphaFold model.

TAPASS - Tool for Ar States	nnotation of Protein Amyloidogenicity in the context of other Structural
	to predict protein aggregation by accounting for the overall structural context of the protein. In particular, the of Exposed Amyloidogenic Regions (EARs) located within intrinsically disordered regions (IDRs) and potential
Citing TAPASS: Contact: andrey.kajava@crbr	n.cnrs.fr
Documentation	
Protein sequence query AlphaFe	old model query
Upload a file* Parcourir) AF-A0A0A0MPH1-F1-mode	Options: #_v1.pdb • Amyloidogenic regions • 🖉 ArchCandy • 🖉 Tango • 🖉 PASTA • 🖉 Transmembrane regions (TMHMM) • 🖾 Tandem repeats (Meta Repeat Finder) Kingdom* Eukaryote v • 🖉 Short linear motifs (SLiMs) • 🖉 Signal peptide (SignalP) Submit Query


2.3 Output

2.3.1 Graphical view

Predicted regions are represented by coloured boxes. ARs (light pink) and EARs (purple), which are the main focus of the pipeline, are grouped at the upper part of the output plot.

ТАРА	SS - Tool for Annota	tion of Protein An	nyloidogenicity in the	context of other St	ructural States				
SEQU	ENCE_ID: >sp P23515 C	MGP_HUMAN Oligo	dendrocyte-myelin glycop	rotein OS=Homo sapiens	s OX=9606 GN=OMG PE	=1 SV=2			
Length	h: 439 aa								
Docum	entation								
Position : 170	H Zoom:x1 (Stourtedo)								
Sequence									
AR_ArchCandy EAR ArchCand									
AR_Tango EAR Tango	,								
AR_PASTA EAR_PASTA				Amytoidogenic region					
SignalP									
TMHMM Pfam	D) PF01462.19	D: PF12709.8	D: FF12799.8	D: PF13855.7					
CATH Repeats IDR consens	ID: 3:80.10.10/FF/4094		ID: 330.10.10/FF/19191			ID: 2.30.180.10/FF/9	6		
IDR_IUPred IDR_BISMM									
SLiMs									
•	5	D	100	150	200	250	300	350	400
Download pipeli	ine results in CSV format								
Back to input pa	nge								

It is possible for users to zoom in an area of interest by using the mouse left-click, the zoom out can be done by using the mouse right-click.

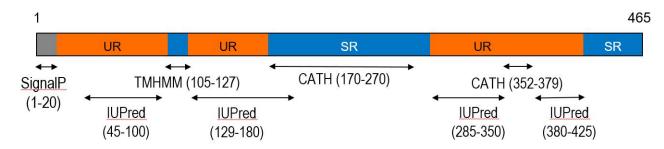
2.3.2 CSV file

A CSV file summarising the prediction results can be download by clickling on the button at the bottom of the page '*Download pipeline results in CSV format*'. Each row represents a prediction and contain six columns :

- protein_ID : protein's identifier
- prediction_type : type of the predicted region (amyloidogenic region, transmembrane region, disordered region,...)
- prediction_tool : tool used in this prediction (ArchCandy2, Pasta, Tango, CATH,...)
- first_residu_involved : start position of the prediction
- last_residu_involved : end position of the prediction
- accession : accession identifier for CATH, PFAM and SLiMs predictions

	A	В	С	D	E	F
1	protein_ID	prediction_type	prediction_tool	first_residue_involved	last_residue_involved	accession
2	sp_P23515_OMGP_HUM	structural domain	CATH	23	93	3.80.10.10/FF/4094
3	sp_P23515_OMGP_HUM	structural domain	CATH	94	272	3.80.10.10/FF/19191
4	sp_P23515_OMGP_HUM	peptide signal	SignalP	1	24	
5	sp_P23515_OMGP_HUM	transmembrane region	TMHMM	9	31	
6	sp_P23515_OMGP_HUM	disordered region	IUPred	335	346	
7	sp_P23515_OMGP_HUM	disordered region	IUPred	364	410	
8	sp_P23515_OMGP_HUM	disordered region	BISMMpredicto	29	48	
9	sp_P23515_OMGP_HUM	disordered region	BISMMpredicto	333	348	
10	sp_P23515_OMGP_HUM	disordered region	BISMMpredicto	362	379	
11	sp_P23515_OMGP_HUM	functional domain	PFAM	25	53	PF01462.19
12	sp_P23515_OMGP_HUM	functional domain	PFAM	56	94	PF12799.8
13	sp_P23515_OMGP_HUM	functional domain	PFAM	124	161	PF12799.8
14	sp P23515 OMGP HUM	functional domain	PFAM	168	226	PF13855.7
15	sp P23515 OMGP HUM	consensus ordered region	TAPASS	1	332	
16	sp P23515 OMGP HUM	consensus disordered region	TAPASS	333	440	
	sp P23515 OMGP HUM		ArchCandy2	39	64	
18	sp P23515 OMGP HUM	amyloidogenic region	ArchCandy2	121	145	
19	sp P23515 OMGP HUM	amyloidogenic region	ArchCandy2	175	196	
20	sp P23515 OMGP HUM	amyloidogenic region	ArchCandy2	218	243	
21	sp P23515 OMGP HUM	amyloidogenic region	ArchCandy2	273	294	
22	sp P23515 OMGP HUM	amyloidogenic region	ArchCandy2	347	372	
23	sp P23515 OMGP HUM	amyloidogenic region	ArchCandy2	418	440	
24	sp P23515 OMGP HUM	exposed amyloidogenic region	ArchCandy2	347	372	
25	sp P23515 OMGP HUM	exposed amyloidogenic region	ArchCandy2	418	440	
	sp P23515 OMGP HUM		Pasta	169	206	
27	sp P23515 OMGP HUM	amyloidogenic region	Pasta	417	439	
		exposed amyloidogenic region	Pasta	417	439	
	sp_P23515_OMGP_HUM		Tango	235	239	
	sp P23515 OMGP HUM		Tango	273	281	
	sp P23515 OMGP HUM	, , ,	Tango	292	295	
	sp P23515 OMGP HUM		Tango	424	439	
		exposed amyloidogenic region		424	439	
	sp P23515 OMGP HUM		ELM	408		ELME000155
	sp P23515 OMGP HUM		ELM	371		ELME000159
	sp P23515 OMGP HUM		ELM	410		ELME000159
	sp P23515 OMGP HUM		ELM	336		ELME000220
	sp P23515 OMGP HUM		ELM	394		ELME000239
	sp P23515 OMGP HUM		ELM	414		ELME000239
	sp P23515 OMGP HUM		ELM	411		ELME000289

3 Tools available


- ArchCandy2 : Amyloidogenic region predictor, an updated version of ArchCandy (Ahmed et al., 2015)
- Pasta 2.0 : Amyloidogenic region predictor (Walsh et al., 2014)
- Tango : Amyloidogenic region predictor (Fernandez-Escamilla et al., 2004)
- **IUPred** : Intrinsically disorder predictor (Dosztányi et al., 2005)
- **BiSSM** : Intrinsically disorder predictor
- **SignalP** : Signal peptide predictor (Petersen et al., 2011)
- **TMHMM** : Transmembrane region predictor (Krogh et al., 2001)
- **CATH** : Structural domains predictor associated with HMMER (Dawson et al., 2017; Eddy, 2011)
- **PFAM** : Protein family predictor (El-Gebali et al., 2018)
- **SLiMs** : Eukaryote short linear motifs predictor (Kumar et al., 2020; Ruhanen et al., 2014)

• Meta Repeat Finder : Predictor of repeats in sequences

4 Consensus IDRs, AR and EAR

4.1 Consensus IDRs

The pipeline assigns each residue of the analysed protein as belonging to a structured or an unstructured region. If both BISMM and/or IUPred predict a structured state at a given region, it is mapped as structured. If a structured region predicted by CATH or TMHMM overlaps with IDR prediction, this region is considered as structured. At the same time, structured regions of less than 30 residues are considered as unstructured. An exception is made for TMHMM prediction of transmembrane regions, which being shorter than 30 residues, are still considered structured. Consensus IDRs of less than 20 residues are considered as structured. N-terminal regions predicted as signal peptides are excluded from our analysis. Proteins shorter than 30 residues were predicted to be unstructured with exception of ones containing a transmembrane helix.

4.2 Amyloidogenic regions (ARs)

The results of the three amyloid predictors, ArchCandy2, TANGO and PASTA 2.0, were treated separately. Each predictor distinguishes between two types of regions : amyloidogenic regions (ARs) and non-amyloidogenic regions, with scores over and below the threshold, respectively. This binary outcome ignores both the exact values of the scores over the threshold and the number of the amyloidogenic hits at a given residue.

4.3 Exposed amyloidogenic regions (EARs)

EARs were defined in a similar way as with ARs, with the additional criteria that individual hits of amyloidogenic predictors should overlap with at least 80 % of an IDR.